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Abstract
Recent years have witnessed the rise of Internet-of-Things
(IoT) based cyber attacks. These attacks, as expected, are
launched from compromised IoT devices by exploiting secu-
rity flaws already known. Less clear, however, are the fun-
damental causes of the pervasiveness of IoT device vulner-
abilities and their security implications, particularly in how
they affect ongoing cybercrimes. To better understand the
problems and seek effective means to suppress the wave of
IoT-based attacks, we conduct a comprehensive study based
on a large number of real-world attack traces collected from
our honeypots, attack tools purchased from the underground,
and information collected from high-profile IoT attacks. This
study sheds new light on the device vulnerabilities of today’s
IoT systems and their security implications: ongoing cyber
attacks heavily rely on these known vulnerabilities and the
attack code released through their reports; on the other hand,
such a reliance on known vulnerabilities can actually be used
against adversaries. The same bug reports that enable the de-
velopment of an attack at an exceedingly low cost can also be
leveraged to extract vulnerability-specific features that help
stop the attack. In particular, we leverage Natural Language
Processing (NLP) to automatically collect and analyze more
than 7,500 security reports (with 12,286 security critical IoT
flaws in total) scattered across bug-reporting blogs, forums,
and mailing lists on the Internet. We show that signatures
can be automatically generated through an NLP-based report
analysis, and be used by intrusion detection or firewall sys-
tems to effectively mitigate the threats from today’s IoT-based
attacks.

1 Introduction

The pervasiveness of Internet-of-Things (IoT) systems, rang-
ing from cameras, routers, and printers to various home au-
tomation, industrial control and medical systems, also brings
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in new security challenges: they are more vulnerable than
conventional computing systems. IoT systems may fall into
an adversary’s grip once their vulnerabilities are exposed.
Indeed, recent years have seen a wave of high-profile IoT
related cyber attacks, with prominent examples including IoT
Reaper [25], Hajime [24], and Mirai [41]. Particularly, com-
promised IoT systems are becoming the mainstay for today’s
botnets, playing a central role in recent distributed denial-of-
service attacks and other cybercrimes [39]. An example is
Mirai, which involved hundreds of thousands of IoT devices
and generated an attack volume at 600 Gbps, overwhelming
Krebs on Security, OVH, and Dyn. It does not come as a sur-
prise that these devices are reported to be hacked all through
known vulnerabilities, including those caused by misconfig-
uration or mismanagement, just like unpatched servers and
personal computers that are routinely exploited [42]. Still
less clear, however, are the fundamental causes for this trend
of malicious activities that are disproportionately related to
IoT systems and these vulnerable devices’ impact upon the
cybercrime ecosystem.

Understanding the perilous IoT world. More specifically,
we raise the following questions: Why are IoT devices more
favorable to cybercriminals than other Internet hosts? How
important are known vulnerabilities to the ongoing attacks on
IoT systems? Is there an effective defense to mitigate ongoing
attacks? The answers to these questions are critical for seeking
an effective means to thwart the wave of malicious attacks that
increasingly rely on a large number of vulnerable IoT devices.
Finding these answers, however, is by no means trivial due to
the challenges in (1) recovering disclosed IoT vulnerabilities
from a large number of vulnerability reports scattered around
forums, mailing lists, and blogs, and (2) collecting artifacts
from the cybercrime underground to study how known flaws
are utilized and how significant they are to ongoing criminal
activities.

To understand how cybercriminals use these known vulner-
abilities, we set up honeypots to collect the data of real-world
IoT exploits and also analyzed four popular attack toolkits.
From the adversary’s end, our study shows that today’s IoT



attacks almost exclusively use known vulnerabilities for ex-
ploitation. Specifically, among 81 different exploit scripts
recovered from our honeypots, we found that 78 of them are
on our vulnerability list. Also, each of the four attack toolkits
we studied incorporates the exploits on at least 34 vulnera-
bilities, with all of them on our list. More importantly, we
evidence that an adversary extensively leverages the exploit
code released together with the vulnerability reports, and in
most cases, directly copies the code or slightly adjusts it. More
than 80% of the IoT-related reports come with working attack
methods. Given our observations that most of IoT vulnerabil-
ities can be exploited to attack target devices (compared with
only 5% exploitable ones in Linux kernel vulnerabilities [43]),
it is apparent that the cost for attacking IoT systems today is
exceedingly low.

Automated protection generation. On the other hand, we
show that adversaries’ indulgence in such low-hanging fruits
can actually be used against themselves. Specifically, the re-
liance on known vulnerabilities means that a large attack
surface would be closed once these problems have been fixed.
Interestingly, this turns out to be completely feasible, due
to the simplicity of the problems and the availability of the
vulnerability disclosure and attack code that carries all the
information we need to fix the reported flaws. Based on this
observation, we developed a framework, called IoTShield,
which utilizes Natural-Language Processing (NLP) to au-
tomatically evaluate the content of vulnerability reports. In
particular, IoTShield is based upon a set of automatic content
analysis techniques that accurately discover IoT-related vul-
nerability disclosures from a large number of vulnerability
reports published at different sources.

Using the approaches above, we automatically analyzed
430,000 vulnerability reports and discovered more than 7,500
IoT reports in the past 20 years. Then, IoTShield extracts
key knowledge from these reports to automatically generate
vulnerability-specific signatures, which can be used by exist-
ing intrusion detection systems (IDSes) or web application
firewalls (WAFs) to screen the traffic received by IoT de-
vices under protection. We validated the efficacy of IoTShield
over 178,778 traces harvested by our honeypots, as well as
11,602 traces of eight real devices, including both attack and
legitimate traffic. Furthermore, we evaluated the effectiveness
of IoTShield over a long-time (more than one year) traffic
captured in an industrial control system’s human machine
interface (HMI) Honeypot. The evaluation results show that
IoTShield achieves a high precision (above 97%) and a very
low false positive rate with minor performance impact.

Contributions. The major contributions of this work are out-
lined as follows:

•New discovery. Leveraging the collected traces of real-world
IoT exploits and analysis results from popular attack toolkits,
we bring to light new observations, including the adversary’s
exclusive use of known flaws and published code. These

observations demonstrate that IoT devices are indeed more
vulnerable, less patchable, and easier to attack than traditional
Internet hosts, elucidating the ongoing cybercrime trend that
heavily relies on these devices.

• New defense. More importantly, these findings also present
us with an opportunity that could lead to the immediate de-
feat of most attack vectors in today’s IoT-related attacks. We
demonstrate that from the same sources adversaries use to
build their exploits, vulnerability signatures can be automati-
cally generated using NLP, and be quickly deployed to shield
IoT devices from malicious attacks. Given the adversary’s
dependence on these known vulnerabilities, we believe that
this simple, low cost yet effective defense will significantly
raise the bar for future IoT-related attacks.

Roadmap. The rest of the paper is organized as follows. Sec-
tion 2 presents the background and our threat model. Section 3
describes our new understandings on IoT vulnerabilities and
real-world threats to IoT devices. Section 4 introduces the
automated protection generation to defend against IoT attacks.
Sections 5 and 6 present the implementation and evaluation of
our automated protection generation, respectively. Section 7
discusses the limitations of this study and mitigation. Sec-
tion 8 surveys related work, and finally, Section 9 concludes
the paper.

2 Background

IoT vulnerability life cycle. Usually, an IoT device’s vulner-
ability is a loophole in its firmware that enables an attacker to
circumvent the deployed security measures [57]. Such a vul-
nerability has a life cycle with distinct phases characterized by
its discovery, disclosure, exploitation, and patching. The first
phase starts when the vulnerability is discovered by a vendor,
a hacker, or a third-party security researcher. The security
risk becomes particularly high if it is first found by hackers.
The next phase is the public disclosure of the vulnerability
by those who discover it, and is supposed to be done through
a coordinated process [22], during which the vulnerability
information is kept confidential allowing vendors to create a
patch. However, this procedure is not always followed. Actual
real-world disclosures could happen in different ways through
sources across the Internet, including personal blogs, public
forums, and security mailing lists. Once publicly disclosed,
the information about a vulnerability is freely available to any-
one. Thus, the level of security risk further increases as the
hacker community is active in developing and releasing zero-
day exploits [40]. From our observations, about 80% of IoT
vulnerability reports are released together with exploitable
methods, which can be readily utilized by hackers.

Even worse, a vendor may not provide any security updates
or patches in response to a disclosure, even though it is sup-
posed to do so. Also, even with the patches available, it is not
uncommon that many users of the affected IoT devices do not



install them, given the complicated procedure (for ordinary
users) to patch the firmware.

The life cycle of an IoT vulnerability ends when all IoT
users install the patch to fix the vulnerability. However, even
if an IoT device has a serious security vulnerability and ven-
dors have released the patch, some users have no capability
of updating patches in a timely manner due to their limited
knowledge. From our observations, the life cycle of some IoT
vulnerabilities lasts more than five years, during which these
problems can be exploited at any time.

Signature-based IDS. An intrusion detection system (IDS)
monitors a network or a system for malicious activities or
policy violations. These systems can be signature-based or
anomaly-based. Signature-based detection leverages known
patterns (signatures) of malicious code or operations to iden-
tify malicious activities, while anomaly-based detection cap-
tures deviations from a system’s normal profile. The focus of
our protection is to provide automatic signature generation
for the signature-based detection systems, such as Snort [37].

Signatures can be used to describe a specific attack on
a vulnerability or model the vulnerability itself. The latter,
which provides comprehensive protection against all related
attacks on the weakness, is called a vulnerability-specific sig-
nature. Such a signature is typically created through manual
analysis of a vulnerability. In our study, however, we found
that the rich information about IoT vulnerabilities from vari-
ous sources (blogs, mailing lists, and forums) can actually be
leveraged to automatically generate such a signature, using
NLP techniques.

Natural language processing. Our research utilizes various
NLP techniques to analyze the text content of various vul-
nerability reports. A spell-checking [1] is used to filter out
documents irrelevant to IoT. Regular expression based pattern
matching is utilized to identify the vulnerability reports re-
lated to IoT. Further, semantic consistency analysis is used to
examine the extracted IoT entities. To generate a vulnerability-
specific signature, in-depth understanding of the vulnerability
semantics is needed and can be achieved by using a grammat-
ical dependency parser [51], which provides a representation
of grammatical relations between words in a sentence.

Threat model. In this work, we consider an adversary who at-
tempts to exploit the security flaws disclosed in a vulnerability
report to compromise remote, Internet-connected IoT devices.
For this purpose, the adversary can compromise the remote
IoT devices and use them to launch malicious attacks. In par-
ticular, we focus on Internet-connected IoT devices (e.g., IP
cameras, routers, and printers) that expose their attack sur-
faces on the Internet. Accordingly, adversaries can exploit
those devices’ security flaws remotely, and gain unauthorized
control of those vulnerable devices (e.g., a compromised IoT
device may become a botnet node).

Forwarder

Real devices

VPS

Local Network Internet

Figure 1: The infrastructure of our real device honeypots.

3 Understanding Real-World Threats

To understand how IoT vulnerabilities are exploited by adver-
saries, we deployed honeypots, analyzed underground attack
toolkits, and studied prior attack reports. Here we elaborate
our findings.

3.1 Honeypot

Our honeypots include real IoT devices and simulated devices
for collecting real-world attack activities.

Real device honeypot. We deployed eight vulnerable IoT de-
vices (three routers and five cameras) as honeypots from May
2018 to June 2018. These devices and their corresponding
vulnerabilities are listed in Table 1. We chose these devices be-
cause they are typical IoT systems being exploited in various
real-world attacks [41].

Figure 1 illustrates our honeypot system’s infrastructure. To
increase these devices’ IP diversity, we rented Virtual Private
Servers (VPSes) across different countries as relay hosts for
each IoT device. Whenever an attacker connects to a VPS,
we redirect this request to the corresponding IoT device and
forward its response back to the attacker.

More specifically, we use the reverse SSH tunneling [33]
to bridge the gap between the IoT devices behind NAT and
VPSes. For this purpose, we set up a persistent SSH tunnel
from our device to its corresponding VPS, which is config-
ured with the SSH port forwarding command [38] to send
the traffic received from the VPS’ public IP on the HTTP
port to FORWARD_PORT (pointing to the IoT device). For
devices not supporting the SSH protocol, we set up a PC as
FORWARD_PORT, passing the received traffic to the device.

Simulated honeypot. To study the attacks on more vulnera-
ble devices, we also deployed four simulated IoT honeypots
from May 2018 to July 20181 across two countries (Canada
and the United States) and four cities (Buffalo, Los Angeles,

1The timeline for simulated honeypot data collection is not consistent
with that of the real device honeypot, due to the data loss caused by a mis-
configuration event in our real device honeypot.



Table 1: IoT device honeypot.

Products Vulnerabilities
Linksys Multiple XSS [10]

WVC54GCA Absolute path traversal [12]
Stored passwords/keys [13]

Directory traversal (adm/file.cgi) [11]
TP-Link Authentication bypass [19]

TL-SC3171G OS Command injection [14]
Hard-coded credentials [15]

Unauthenticated file uploads [16]
Unauthenticated firmware upgrades [17]

Dahua IPC-HF2100 Hard-coded Credentials [18]
D-Link DIR-645 Authentication Bypass [21]
TVT TD-9436T Command execution [32]

Easyn Model:10D Unreported 0-day
TP-link TL-WAR458L Remote command execution [20]
TP-Link TL-WR941N Backdoor [8]

Canyon Country, and Beauharnois), which cover more than
2,000 devices and 23 vulnerabilities.

The settings of these simulators are listed in Table 2. The
Avtech honeypot covers 14 vulnerabilities, such as authentica-
tion bypass and command injection, which affect all Avtech
devices (i.e., IP camera, NVR, and DVR) and firmware ver-
sions. The “GoAhead webs” honeypot simulates the GoAhead
IP camera using a GoAhead-webs HTTP server. The honey-
pot covers seven critical vulnerabilities, such as the backdoor
account and the pre-auth information leakage. Particularly,
the latter is found in more than 1,250 different camera mod-
els. This enables us to significantly increase the number of
vulnerable devices in our study.

Specifically, each honeypot is an HTTP server (on Apache),
whose default configurations (such as default page and HTTP
response header/body) have been modified to simulate real
devices. If a honeypot finds an IP address that attempts to
connect to our honeypot, it records the request packets from
the IP and their timestamps before sending back “200 OK”
and redirecting all HTTP requests to our main page. Note
that some attacks may first send a harmless request to identify
their target devices. In this case, returning a “200 OK” often
triggers follow-up attack behaviors. Also, all of our simulators
are indexed as real IoT devices in Shodan [59], and so they
can be discovered from the device search engine.

Analysis. From May to July in 2018, our honeypots gathered
190,380 HTTP requests from 47,089 IPs across 175 countries.
We analyzed these traffic traces as follows: first we removed
those confirmed to be legitimate, including legitimate login
attempts, the requests like “GET /”, and other ordinary HTTP
GET requests; then we scanned the traces for attack attempts
by searching the exploit code in our vulnerability dataset and
further looking for the common attack traffic patterns, such as
the presence of SQL commands and various execution com-
mands (e.g., “cmd=/usr/bin/telnetd”). In this way, we
identified nearly 2,000 IoT exploit attempts from 60 different
countries, with an average of 38 attacks per day.

Table 2: Four simulated honeypots.

Name Vulnerability Affected products
D-link SOAP [23] command injection at least 12 products

GoAhead webs [27] 7 CVEs 1,250 affected models
JAWS [30] command injection all DVR running JAWS
Avtech [4] 14 vulnerabilities all Avtech devices

Table 3: Traffic analysis of deployed honeypots.

Real devices Simulated honeypots
Malicious (Targeted) 20 ∼300

Malicious (Blind-scanned) 121 ∼1,560
Benign 11,451 176,764

Unknown 10 ∼154
Total 11,602 178,778

Table 3 presents the results in detail: for the real device
honeypot, 141 unique attacks with 26 different scripts were
captured, and 1,860 unique attacks through 81 attack scripts
were found from our simulated honeypots. About 164 un-
known requests still cannot be confirmed to be legitimate or
malicious.

Analyzing these attacks (2,001 in total), we found that
about 320 of them aimed at the honeypot (real or simulated)
devices, while about 1,681 targeted the devices whose types
are not covered in any honeypots. On one hand, this indicates
that an adversary may blindly conduct an attack without first
identifying the device type. On the other hand, this implies
that our honeypots have a wide-spectrum attack coverage, not
limited by the types of devices deployed at honeypots. More
importantly, there are only 164 unknown requests observed
by our honeypots. Even if we conservatively assume that all
unknown requests originate from individual malicious attacks
that exploit unknown security flaws, less than 10% (164 vs
2,001) of the total attacks exposed to our honeypots are such
unknown attacks. In other words, more than 90% of malicious
attacks exploit the known vulnerabilities. This observation is
consistent with our analysis of underground attack toolkits
(see Section 3.2).

Most commonly exploited vulnerabilities found in our
study include unauthenticated command injection and infor-
mation disclosure. These flaws can be easily attacked by
sending a simple HTTP request to the vulnerable device to
gain full control of the device. An intriguing observation is
that 96% of the IoT attacks use the same or similar scripts
included in the vulnerability reports we collected. For ex-
ample, an attacker compromised our device TVT TD-9436T
through a command execution vulnerability by using the ex-
act same code documented in the report [32]. In another ex-
ploit (i.e., /board.cgi?cmd=/usr/sbin/telnetd) [28] on
the same vulnerability location “board.cgi”, the only change
found in the attack code was an adjustment of a param-
eter from “/usr/sbin/telnetd” to the Linux command
“cat+/etc/passwd”.



Table 4: Underground IoT attack tools.

Name Vulnerabilities
IPCAM exploits Pre-Auth Info Leak
Huawei Exploits Command Execution

iotNigger Netis Backdoor
Brickerbot More than 30 vulnerabilities

Table 5: Known IoT attack activities.

Name Vulnerabilities Year
IOT Reaper [25] 10 vulnerabilities 2017

Hajime [24] at least 3 vulnerabilities 2016
Satori [34] 2 vulnerabilities 2018

Brickerbot [6] 21 vulnerabilities 2017
Masuta [26] bypass & command execution 2018
Amnesia [3] remote code execution 2017

3.2 Artifacts from Other Sources

To validate the findings made from the honeypots, we fur-
ther analyzed four underground attack toolkits and six well-
documented IoT botnets, which are elaborated below.

Underground attack tools. In this work, we searched popu-
lar underground marketplaces (such as openbazaar and dream-
market) by using a set of keywords related to attack toolkits
(such as IoT malware names listed in Table 12 of Appendix),
in an attempt to find the posts selling such tools. Once the
posts were discovered, we contacted the sellers and purchased
the tools. Altogether, we obtained four such tools with their
source code (see Table 4), including Brickerbot, a variation
for the one used in the famous Brickerbot attack [6].

By analyzing their code, we again found that all vulnerabil-
ities they exploit are known ones, and their attack scripts are
all copied from the vulnerability reports with minor changes
(e.g., C&C server IP) to customize for specific attack cam-
paigns. More specifically, from these tools, we identified 99
different attack scripts related to 34 vulnerabilities. Those
vulnerabilities are all recorded in our dataset. Among the 99
attack scripts, three of them are exactly the same as those doc-
umented, while the remaining 96 all have small changes. As
an example in Table 4, the Huawei exploit on an arbitrary com-
mand execution vulnerability apparently comes from exploits-
db (https://www.exploit-db.com/exploits/43414/), with only
its Linux command (e.g., “ls”) changed to a new one (e.g.,
communicate with a specific remote server). Again, this con-
firms what we observed by analyzing our honeypot data: most
IoT attacks utilize known vulnerabilities and even the attack
code provided in the vulnerability reports, which on the other
hand could be leveraged to quickly suppress this emerging
attack wave.

Known attacks. Finally, we analyzed some well-known, well-
documented IoT botnets that were recently reported (Table 5)
to understand whether mostly known vulnerabilities and docu-

mented attack scripts were indeed used. These botnets were all
aimed at the security flaws that affect many different products
(like IoT Reaper) or those widely deployed on the Internet
(like Masuta). Some of them (IoT Reaper and Amnesia) also
focus on the vulnerabilities without patches.

Once again, we found that all the vulnerabilities exploited
in these attacks are also included in the reports gathered in our
research, and all the scripts attacking these flaws are the copies
or variations of the code in the reports. For example, IoT
Reaper attacks 37 vulnerabilities documented by 10 different
reports: 10 for remote command execution, at least 24 not on
any CVE and 7 without patches. Note that all these attacks
took place after the disclosure of related vulnerabilities. For
instance, IoT Reaper was brought to light in 2017, while the
flaw it uses, Linksys E1500/E2500 vulnerabilities, was made
public in 2013.

4 Automated Vulnerability-specific Signature
Generation

As mentioned earlier, the IoT vulnerability ecosystem has a
serious problem: the attack scripts are often publicly available
in the vulnerability reports, making those known vulnerabil-
ities easy to exploit. Such a problem has led to the spree of
large-scale IoT based attacks in recent years, which almost
exclusively exploit known flaws.

In the meantime, the adversary’s reliance on the well-
documented vulnerabilities also presents a new opportunity
for mitigating such threats. From the same vulnerability re-
ports, vulnerability-specific information can be extracted to
form a protection strategy that stops all attacks on the vul-
nerability. In our research, we developed IoTShield, an au-
tomatic tool that collects IoT vulnerability reports from the
Internet, analyzes the content of the IoT vulnerability reports,
and recovers key knowledge to generate vulnerability-specific
signatures, with their qualities determined by the compre-
hensiveness of the reports. These signatures can be easily
deployed to existing intrusion detection systems (IDSes) or
web application firewalls (WAFs) to detect exploit attempts on
the target device from the traffic it receives. In the following,
we elaborate on this approach.

4.1 Overview and Data
Collecting IoT vulnerability reports from Internet and extract-
ing vulnerability-specific knowledge from the collected IoT
vulnerability reports for signature generation is a non-trivial
task, with unique technical challenges. First, a large number
of vulnerability reports are scattered around forums, mailing
lists, and blogs with different format written by different peo-
ple. It is difficult to identify IoT vulnerability reports from
other documents. Second, such identified IoT vulnerability re-
ports describe security flaws in natural language, which makes
a large-scale discovery of vulnerability information difficult.

Think
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Figure 2: The architecture of IoTShield.

Third, identifying critical elements for a signature requires
domain-specific knowledge to carefully distinguish between
exploit-specific information and vulnerability-specific infor-
mation. To address these challenges, in IoTShield, we use an
IoT vulnerability extractor to remove irrelevant content and
identify key information of IoT security flaws. After the col-
lection of IoT vulnerability reports, we extract the semantics
of vulnerability descriptions and other structured information
(e.g., attack scripts) from the vulnerability reports. The de-
scriptions here provide information about all circumstances
under which a vulnerability can be exploited (e.g., all related
parameters and locations), which enables us to leverage the
attack surface observed from an attack script or other struc-
tured information like traffic logs to stop other attacks. A
problem is that some of the vulnerability reports do not have
vulnerability descriptions or structured information. Later we
discuss how we handle this issue (see Section 4.3).

Architecture. Figure 2 illustrates the architecture of IoT-
Shield, which has three major components: (1) data collection,
(2) IoT vulnerability extraction, and (3) automated protection
generation. Data collection is used to gather vulnerability
reports from the Internet. The IoT vulnerability extraction
is used to extract IoT vulnerability information from a large
number of documents, including forums, blogs, and mailing
lists. More specifically, we crawled popular online sources
for bug disclosure and further ran a corpora quality analyzer
to filter out the documents that are irrelevant to vulnerability
reports. For the remaining documents, we used a recognizer
to identify IoT vulnerability reports and extracted key infor-
mation, such as their types, affected products, CVE numbers,
authors, and published dates. This information will serve as
the description for the later signature generation stage. Once
given a set of IoT vulnerability reports, IoTShield first clus-
ters the reports describing the same vulnerability together,
and then utilizes NLP to discover the vulnerability semantics
(e.g., vulnerability type, location, and parameters) from the
descriptions. Then, it extracts the structured information (e.g.,
traffic logs, scripts, and Linux commands) to create an exploit

Table 6: List of vulnerability reporting websites.

Categories Website Reports IoT reports

Personal s3cur1ty.de/advisories 28 16
Blogs pierrekim.github.io 18 13

gulftech.org 129 5
Forums seclists.org/fulldisclosure 108,647 1,219
Team coresecurity.com 390 31
Blogs vulnerabilitylab.com 2,122 39

blogs.securiteam.com 1,925 42
Mailing lists seclists.org/bugtraq 85,593 1,591

Data exploit-db.com 39,380 895
Archive packetstormsecurity.com 97,093 1,951

0day.today 30,177 834
seebug.com 56,413 690
myhack58 7,311 150

Total - 42,9795 7,514

(or PoC) template and find illegal parameters (e.g., those used
to inject commands). After that, the signature generation com-
ponent utilizes the vulnerability location and parameters to
identify all related attack surfaces, which helps to determine
all parameters for the template that can also lead to exploits.
The parameters and template here form the signature. Finally,
IoTShield automatically transforms the signature into the for-
mat used in existing IDSes or WAFs (the prototype built in our
research outputs a Snort signature [37]) for a fast deployment.

Dataset. As mentioned earlier, we ran our crawler across
the vulnerability reporting websites listed in Table 6, in-
cluding forums (seclist.org/fulldisclosure), mailing
lists (seclist.org/bugtraq), personal blogs/advisories
(pierrekim.github.io), research team advisories
(coresecurity.com), and vulnerability archive websites
(packetstromsecurity.com). These sources were col-
lected from the external references included in CVEs, among
which we selected the most frequently used ones. From these
sources, we further manually picked out those related to IoT
vulnerabilities, like seclist.org, and added them to the list,
which also includes some research groups’ websites known
to report security vulnerabilities.

seclist.org/fulldisclosure
seclist.org/bugtraq
pierrekim.github.io
coresecurity.com
packetstromsecurity.com
seclist.org


4.2 IoT Vulnerability Extraction

Preprocessing. Over the documents collected by the crawler,
our IoT vulnerability extraction component removes the tex-
tual information irrelevant to vulnerabilities, such as advertise-
ments, pictures, dynamical scripts, and navigation bar, while
keeping the main content of each webpage with document
URLs, document titles, authors, and publication dates. Since
different websites have different templates and HTML struc-
tures, we manually analyzed each of them (13 vulnerability
reporting sites in total, see Table 6) to identify useful content.

Corpora quality analyzer. After the preprocessing, we still
need to filter out the documents irrelevant to IoT vulnerability
reports, which is done as follows:

• The percentage of dictionary words. We removed the doc-
uments whose content contains mostly (above 82% in our
research) dictionary words, which are recognized by enchant
library [1], since a real vulnerability report always includes
a significant amount of non-text information, like vulnerable
paths and functions, PoC or scripts, etc. Otherwise, the text
looks more like a survey article, white paper or notification.

• The number of hyperlinks. In general, a vulnerability re-
port, particularly for IoT, is not supposed to include too many
hyperlinks. Otherwise, it could be a summary for all the vul-
nerabilities disclosed, instead of a specific report with detailed
vulnerability information. Thus, we discarded the documents
with more than 25 hyperlinks.

•Threshold justification. The two threshold values above (i.e.,
82% and 25) are based on our empirical experience, for the
purpose of filtering out most non-IoT vulnerability reports
with little collateral damage. To justify our threshold config-
uration, we attempt to estimate the possibility of a real IoT
vulnerability report being wrongly discarded. To this end, we
randomly sampled 100 documents being discarded and then
manually examined whether there is any wrongly discarded
case (i.e., a real IoT vulnerability report but discarded as non-
IoT). What we found is that all of the sampled documents
are irrelevant to IoT vulnerability reports (neither related to
IoT vulnerability nor containing any vulnerability details).
In the other words, no real IoT case exists among these 100
randomly sampled documents that are discarded as non-IoT.
This implies that our empirical threshold configuration is very
effective to filter out non-IoT vulnerability reports.

IoT vulnerability recognition. For the remaining docu-
ments, we further ran a recognizer to discover IoT vulner-
ability reports and extract key information (i.e., device type,
vendor name, and vulnerability type). The retrieval of the
vulnerability information is modeled as a named entity recog-
nition problem [52] in NLP. More specifically, we first at-
tempted to identify four IoT vulnerability-related entities,
including device types, vendors, product names, and vulner-
ability types, and then utilize the dependency relationship
across them to confirm the presence of vulnerability-related

Table 7: Context textual terms.

Entity Context terms

Device
Type

camera, ipcam, netcam, cam, dvr, router

nvr, nvs, video server, video encoder, video recorder

diskstation, rackstation, printer, copier, scanner

switches, modem, switch, gateway, access point

Vendor 1,552 vendor names

Product
[A-Za-z]+[-]?[A-Za-z!]*[0-9]+[-]?[-]?[A-Za-z0-9]

*∧[0-9]2,4[A-Z]+

Vuln type 733 CWE, 88 abbreviations

Version
(?:version[:. ]*([\w-][\w.-]+)

ve?r?s?i?o?n?s?[:. ]*([\d-][\w.-]+)

CVE CVE-[0-9]{4}-[0-9]{4,}

descriptions. Given the uniqueness of the descriptions, we
adopted a set of IoT-specific recognition techniques to retrieve
them, as elaborated on below.

To identify these individual entities, we utilized keyword
and regular expression based matching. For device types, ven-
dor names, and vulnerability types, we used a set of key-
words, as illustrated in Table 7: whenever a single word
in the category (device type, vendor name, or vulnerability
type) is found, we believe that its corresponding entity exists.
These keywords are from the features of real-world devices.
Specifically, we collected all common device types, including
routers, cameras, modems, and printers, and found vendor
names from Wikipedia. We also gathered vulnerability types
from the Common Weakness Enumeration (CWE), which is a
community-developed list of common software security weak-
nesses [9]. Further, we added to the list common acronyms
of these vulnerabilities, such as CSRF and RCE. For product
names, we built regular expressions to identify each entity,
due to the large volume and difficulty of enumeration. These
expressions are listed in Table 7.

In this way, our approach can identify all IoT vulnerability-
related documents. However, given the pervasiveness of such
entities (e.g., the term “switch” also appears in the documents
unrelated to IoT flaws), using them alone could introduce
a large number of false positives. To address this issue, we
leveraged the dependency among these entities to ensure the
correct recognition of these vulnerabilities.

Intuitively, when these entities are indeed used to describe
an IoT vulnerability, they do not independently occur. Instead,
they come together to present a concept. This implies the
existence of dependency among them. In particular, the term
for the vendor entity precedes the product entity or the device-
type entity: e.g., D-Link DIR-600 or Foscam IPcamera. Also,
the document needs to contain the vulnerability type, e.g.,
command injection. Using these rules, we can piece together
these entities, linking IoT products to vulnerabilities. How-
ever, there are still several cases satisfying the rules above but
as non-IoT device entities, such as “NAI NAI-0020” and “EE



Thomson TWG850 Wireless Router Multiple Vulnerabilities

Foscam IP Cameras Multiple Cross Site Request Forgery Vulnerabilities

Belkin Router N150 - Path Traversal Vulnerability

Dlink DIR-601 Command injection in ping functionality

Squirrelmail 1.4.22 Remote Code Execution

New Linux kernel 2.6.8 packages fix several vulnerabilities

Cisco Ironport Appliances - Privilege Escalation Vulnerability

Figure 3: Examples of the IoT vulnerability entities (first
four) and non-IoT vulnerability entities (last three).

13EFF4”. To suppress false positives, we further investigate
the results by using an entity checker. More specifically, in
the entity checker, we search for the extracted entities (e.g.,
D-Link DIR-600) in Google, and then calculate the cosine
similarity between the extracted entities and the title of the
search results. If the similarity is extremely low (e.g., 0.08),
we regard the extracted entity as a non-IoT device.

Figure 3 shows examples of IoT vulnerabilities (the first
four) and other vulnerabilities (the last three) in vulnerability
reports. For each vulnerability extracting from the prepro-
cessing stage, we used the keyword matching to identify the
device type (e.g., router), vendor (e.g., Belkin), and vulner-
ability type (e.g., path traversal). Then, we used the regular
expression based matching to extract product information
(e.g., N150). After that, we checked if the extracted entities
are combined to present a IoT vulnerability concept via local
dependency and entity checker. For example, three entities
“Belkin”, “router”, and “N150” together describe an IoT de-
vice. As we can see from Figure 3, the first four always in-
clude the affected IoT products (e.g., D-Link DIR-600) and
the vulnerability types (e.g., command injection), while the
latter three do not. Once such a report is found, our approach
further extracts the firmware version and CVE number from
its content when such information exists, for the follow-up
analysis. The regular expressions for identifying these entities
are also listed in Table 7.

4.3 Automatic Defense Rule Generation
After the IoT vulnerability recognition, we identified the enti-
ties (i.e., device types, vendors, product names, and vulnerabil-
ity types) from the IoT vulnerability reports. These entities are
then used to cluster IoT vulnerability reports describing the
same IoT vulnerability. Then, given each cluster, we extracted
the vulnerability semantics (e.g., vulnerability location2 and
exploit parameters) and other structured information (e.g.,
attack scripts) from the vulnerability reports. This genera-
tion process, as shown in Figure 4, enables us to leverage the
attack surface to generate a vulnerability-specific signature.

2A vulnerability location is where flaws exist, such as “command injection
in PwdGrp.cgi”, “PwdGrp.cgi” is the vulnerability location.
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Figure 4: The architecture of signature generation.

Figure 5 presents an example, showing how we generate
a signature from an extracted IoT vulnerability report. On
the top-left of the figure is the vulnerability description. The
bottom-left is the content of the structured information, which
is a traffic log for an exploit on this vulnerability. IoTShield
first locates the vulnerability semantics in the description. For
instance, the sentence “command injection in PwdGrp.cgi”
indicates that the vulnerability type is “command injection”
and the affected location is “PwdGrp.cgi”, together with the
vulnerable parameters from another sentence “the username,
password, and group parameters”. Then, IoTShield parses the
structured information (e.g., the traffic logs), and discovers the
path of the vulnerable CGI “/cgi-bin/supervisor/PwdGrp.cgi”
and the parameter used for command injection “pwd = ;re-
boot;”, from the command indicator “;” and the list of legiti-
mate commands.

Further, from the sentence about other vulnerable parame-
ters “the username, password, and group parameters” (from
the description), we can now infer that the same injection
can also happen on “usr” and “grp”, but not on the param-
eters “action” and “lifetime”. In this way, we can build a
vulnerability-specific signature for the injection flaw, and then
transform it into the Snort format (based on vulnerability type)
as presented in Figure 5. Here we elaborate on the individual
components of IoTShield.

Report clustering. There are some different blogs describ-
ing the same vulnerability, and these reports may describe
the vulnerability from different aspects. So, we need to clus-
ter these reports together to form a complete vulnerability
report before the rule generation stage. The challenge is that
although two reports describe the same vulnerability, they
may have different formats with different hash values. Our so-
lution is to use the entities (i.e., device types, vendors, product
names, and vulnerability types), which are recognized from
IoT vulnerability reports, to cluster IoT vulnerability reports
that describe the same IoT vulnerability.

Note that report clustering aims to supplement the miss-
ing information of a vulnerability report (e.g., missing script
code or missing vulnerability description). There rarely exist



13) Authenticated command injection in PwdGrp.cgi The 
PwdGrp.cgi uses the username, password and group 
parameters in a new user creation or modification request in a 
system command without validation or sanitization. Thus and 
attacker can execute arbitrary system commands with root 
privileges. We are aware that this vulnerability is being 
exploited in the wild! 

Traffic log: 
GET cgi-bin/supervisor/PwdGrp.cgi?action=add&user=test&
pwd=;reboot;&grp=SUPERVISOR&lifetime=5%20MIN HTTP/1.1
Host: 107.xx.8.xx
Connection: keep-alive
Accept-Encoding: gzip, deflate
Accept: */*
User-Agent: python-requests/2.18.4

Vulnerability Type: command injection
Vulnerability file: PwdGrp.cgi
Vulnerability parameters: username, password, group

http://<DEVICE_IP>/cgi-bin/supervisor/PwdGrp.cgi?
action=add&user={command}&pwd={command}&grp=
{command}&lifetime=5%20MIN

Vulnerability-based signature

alert tcp any any -> any  $HTTP_PORTS  (content:"/cgi-
bin/supervisor /PwdGrp.cgi"; http_uri; 
pcre:"/[?&](user|pwd|grp)=[^&]*?([\x60\x3b\x7c]|echo|pi
ng|cat|reboot|\x3c\x3e\x24]\x28|%60|%20|%3b|%7c|%2
6|%3c%28|%3e%28|%24%28)/iU";)

Snort format signature

Genera format: http://< DEVICE_IP >/cgi-bin/supervisor/
PwdGrp.cgi?action=add&user=test&pwd=;reboot;&grp=SUP
ERVISOR&lifetime=5%20MIN

Figure 5: Example of vulnerability-specific signature generation from a vulnerability report.

different vulnerabilities with same device type, vendor, prod-
uct name, and vulnerability type. However, even different
vulnerabilities are clustered together, we can extract signa-
tures for each vulnerability when matching the template (see
Section 4.3)

Semantic and structured information retrieval. We first
utilized NLP techniques to analyze the vulnerability descrip-
tions to find vulnerability semantics, including vulnerability
type, location, and short sentences with exploit parameters.
Our approach is based on the observation that the semantic
information of interest is presented through a relatively stable
grammatical structure. Specifically, we utilized the vulnerabil-
ity type list in Section 4.2 to determine the type of the problem
documented and the regular expressions to find the vulnera-
bility location, which should be a web content file, such as
“.htm”, “.cgi”, “.php”, “.asp”, and “.html”. When it comes to
vulnerability parameters, our approach locates the sentences
containing the keyword “parameter”, “variable”, “action”, or
“function”, and leverages the grammatical relationship among
these words and the values of the parameters to find them. For
this purpose, we constructed a dependency tree using the Stan-
ford Dependency Parser [51] to parse the whole sentence and
then extract the nouns as the targeted terms to inspect their
relationship with the keywords. These terms are considered
to be parameters if they have a non-“nmod” relation 3 with
the keyword, or have a “conj” relation 4 with an identified
parameter. An example is shown in Figure 6.

Further, we used the regular expressions (listed in Table 13
of Appendix) to locate different kinds of the structured infor-
mation, including the PoC using Linux commands (curl and
wget), PoC URL, PoC HTML scripts, and PoC traffic log, etc.
For each type of the structured information, we built a parser

3One element serves as a nominal modifier for the other.
4Two elements are connected by a coordinating conjunction.

Figure 6: The dependency tree of a sentence with vulnerabil-
ity parameters.

to transform it into a general template:

htt p : //HOST : PORT/ f ile.su f f ix?{parameters},

where HOST is the device’s IP address, port is the application
layer server port (default is 80), file.suffix is the vulnerabil-
ity location, and {parameters} is the key-value format that
includes the parameters used for the vulnerability file in the
exploits. For each item in {parameters}, IoTShield checks
whether it carries any illegal values like injected Linux com-
mand or Java scripts. Note that not all vulnerabilities need
parameters, such as some information disclosure weaknesses,
which could be exploited by simply requesting the vulnerable
location. In this way, our approach acquires the semantic and
structured information from the vulnerability reports.
Signature generation. After discovering vulnerability infor-
mation from the reports, IoTShield utilizes it to build a signa-
ture. Specifically, we first compared the vulnerability location
(recovered from the description) and “file.suffix” in the
template (from the structured information); if matched, we
believed that the semantic information (including vulnerabil-
ity types and parameters) would be about the flaw modeled
by the template (e.g., that attacked by the script). Then, based
on the vulnerability type, we decided whether to ignore the
parameter part of the template, since some vulnerabilities
do not need parameters to exploit (e.g., information disclo-



sure and directory traversal). For the vulnerability types that
do not need parameters to exploit (e.g., directory traversal
(“/../../etc/passwd”) in D-Link routers [CVE-2018-10822]),
we ignore the parameter part. As of all the vulnerability types
in our data, information disclosure and directory traversal are
the only two typical vulnerability types not requiring a param-
eter to exploit. For those vulnerabilities that need parameters,
IoTShield generalizes the parameter field in the template with
those collected from the description. In this way, we built
a vulnerability-specific signature. An example is shown in
Figure 5.

A problem with this simple signature generation process
is that the semantic information and the structured informa-
tion may not always match in an exact fashion. For example,
in Figure 5, the vulnerability parameters in the vulnerability
description are presented in the natural language (i.e., user-
name, password, and group) while they are abbreviated in the
structured information (i.e., user, pwd, and grp). To address
this problem, we manually collected a list mapping individual
keywords to their corresponding abbreviations used in Linux,
such as grp for group, for translating natural language terms
into parameters in a signature.

Another issue is that, as mentioned earlier, some vulnera-
bility reports do not contain both vulnerability descriptions
and structured information; or vulnerability descriptions do
not contain all vulnerability semantics. Next, we discuss how
to handle them.

• Vulnerability description only. Without structured informa-
tion, all we can get are just the vulnerability type, locations,
and parameters. The parameters, however, can be less reliable
due to the abbreviations they could have, which we cannot
see. Therefore, we can only generate signatures for some vul-
nerabilities: those in which the knowledge of the vulnerability
location alone (e.g., “PwdGrp.cgi”) is enough for protection.
Examples of such flaws include information disclosure and di-
rectory traversal, e.g., for an information disclosure problem,
a request for /QIS_wizard.htm is sufficient for signature
generation.

• Structured information only. Without vulnerability descrip-
tion, we cannot produce a generalized, vulnerability-specific
signature. However, we can still utilize the structured informa-
tion to build an exploit-specific signature to defeat the attack
script described in a vulnerability report. As found in our mea-
surement study (Section 3), today’s IoT attacks often utilize
these published scripts. These signatures can still contribute
to the detection of many ongoing attacks, though they can be
evaded once an adversary is willing to make more effort to
better understanding the flaws he attacks. It is important to
note that some level of generalization is still possible here;
for example, once a parameter recovered from an attack script
is found to contain a Linux command, we can add other com-
mands commonly used in attacks to the parameter list for
signature generation.

5 Implementation and Deployment

5.1 Implementation

We implemented a prototype system of IoTShield, which in-
cludes a set of building blocks. Here we briefly describe the
system’s nuts and bolts, and then show how they are assem-
bled into the prototype system.

Nuts and bolts. Our prototype system was built upon three
key functional components: report crawler, vulnerability ex-
tractor, and rule generator. Those components are extensively
used across the whole system, and they were implemented as
follows.
• The report crawler fetches the vulnerability reports from the
Internet using wget and the scrapy crawling framework [36].
Specifically, for some websites that are well archived (e.g.,
seclists.org/fulldisclosure), we used “wget –mirror”
to download their pages recursively (i.e., crawl the web-
sites as deep as possible). For other websites, we used the
scrapy crawling framework to crawl the whole websites.
Since websites sometimes have crawling restrictions (e.g.,
packetstorm.com has a rate limit and s3cur1ty.de re-
quires a cookie in the header of each request), our crawler
simulates browser behaviors to mitigate those restrictions. It
utilizes different user-agents for each request and sleeps for
a random period of time after sending out multiple requests;
additionally, once an access fails, a new attempt will be made
later, after all pending requests in the current waiting queue
have been delivered.
• The vulnerability extractor was implemented by 2,300 lines
of python code. The Beautiful Soup Python library [5] was
used to parse the vulnerability reports to extract main con-
tents. The NLTK [29] package was used to split sentences,
stem words, remove stop words, etc. The Aho–Corasick al-
gorithm [2] is a string-searching algorithm to speed up the
entity identification stage. A scikit-learn [35] library was used
to calculate the TF-IDF (Term Frequency-Inverse Document
Frequency) cosine similarity in the entity checker.
• The rule generator was implemented by 1,500 lines of
Python code. We used a Simhash Algorithm [31] to detect
near-duplicates, and the Stanford dependency parser [51] to
establish the dependency tree.

5.2 Deployment

IoTShield can be deployed in two modes: coarse-grained and
fine-grained. In the coarse-grained mode, all the generated
rules are used in the IDS system, regardless of device types.
All the rules are used to inspect the network traffic. This mode
is easy to deploy but may have some false positives, since
some rules can be device-specific. Also, in the coarse-grained
mode, we suggest not to use the rules generated from descrip-
tions only. This is because when ignoring device type, the
rules generated from descriptions only may lead some false

seclists.org/fulldisclosure
packetstorm.com
s3cur1ty.de
Think



Figure 7: Vulnerability disclosure trend.

positives. For example, for a report describing an informa-
tion disclosure vulnerability at the file of “/new/index.htm” in
Merit Lilin IP Cameras, with description only, we generate a
signature to block the traffic that attempts to extract informa-
tion from the file of “/new/index.htm”. However, such a sce-
nario (retrieving the file of “/new/index.htm”) may also occur
in normal web servers and cause false positives. In the fine-
grained mode, we take the network environments into account
and deploy rules for given device types. For example, if there
are just D-link devices in the local network, we only deploy
the rules to protect D-link vulnerabilities. More specifically,
in the fine-grained mode, IoTShield first analyzes the network
traffic or actively probes the network to identify device types
(e.g., models and brands) and their IP addresses. This step can
be achieved by using a device list in the monitored network
or using the device fingerprinting method proposed in [47].
After that, a signature selection process will be conducted to
select the corresponding signatures, given the current device
types in the network.

6 Evaluation

6.1 Effectiveness

To validate the efficacy of IoTShield, we first manually
checked the extracted IoT vulnerabilities and obtained some
basic statistics of them. Then, we used two different traffic
traces to evaluate the effectiveness of generated signatures.

Vulnerability extractor. We randomly sampled 200 reports
from those identified for manual validation and achieved a
precision of 94%. In total, we collected 7,514 IoT vulnerabil-
ity reports from 0.43 million articles (Table 6). These reports
disclose 12,286 IoT vulnerabilities, with roughly 1.6 each
on average. Figure 7 shows the average number of IoT vul-

Table 8: List of top 10 vendors and device types of affected
devices.

Device Vendor Num Device Type Num
Cisco 1,264 router 3,700

D-Link 988 switch 1,422
Linksys 539 camera 1,248
Netgear 522 firewall 1,101

HP 485 gateway 1,032
Symantec 299 modem 843
TP-Link 255 access point 478

Zyxel 229 printer 408
Huawei 195 nas 338

Asus 180 scanner 176

Table 9: List of top 10 vulnerability types.

Vulnerability type Num
1 Denial of service 975
2 CSRF 902
3 Buffer overflow 869
4 Command injection 806
5 XSS 775
6 Authentication bypass 763
7 Command execution 458
8 Information disclosure 407
9 Directory traversal 307

10 Privilege escalation 276

nerabilities disclosed per month from 1998 to 2018. We can
see that the number of disclosures has increased since 1998,
and this increasing trend has further sped up since 2012 and
slowed down since 2014, but it peaked in 2018 when about
90 IoT vulnerabilities per month were disclosed.

These IoT vulnerabilities are related to device types and
vendors. We found that the distribution of vulnerabilities
among IoT vendors follows a long-tail: nearly 60% of vulnera-
ble devices are from the top 10 vendors with the most security
flaws. Table 8 lists the vulnerability distribution over these
10 device types and vendors. As we can see here, routers,
switches, and cameras, which are perceived to be the most
common IoT devices, also have the most vulnerabilities. In
addition, the vendors responsible for the most vulnerabilities
(i.e., Cisco, D-Link, and linksys) are all reputable and have
the largest market shares.

Table 9 further lists the top 10 vulnerability types in our
dataset. The majority of them are remotely exploitable (e.g.,
buffer overflow, denial-of-service, CSRF command injection,
and authentication bypass), which could be easily used to com-
promise IoT devices. Moreover, cross-site scripting (XSS),
command injection and command execution are commonly
used by IoT malware to execute commands on a compromised
device as a botnet node.



Table 10: Effectiveness of IoTShield.

Dataset Precision Recall False Positive Rate
Real devices 97% 83% 0.01%

Honeypot 98% 93% 0.06%

Rule generation effectiveness. We first evaluated our IoT-
Shield prototype on 190K HTTP requests collected from IoT
devices and honeypots, using a Macbook Pro with 2.6GHz
Intel Core i7 and 16GB of memory. Again, all signatures
generated were in the Snort format.

Our HTTP requests include those gathered from real-device
honeypots and those from the simulators. In our experiments,
we labeled IoT device traffic as described in Section 3.1.
Those traces include 178,778 HTTP requests received by the
simulators, which are related to 141 attack activities generated
by 26 unique attack scripts, and the rest is benign traffic.
The remaining data come from the real-device honeypots, as
described in Section 3.1, including 11,602 HTTP requests in
1,860 attacks generated by 81 unique attack scripts.

We evaluated the effectiveness of IoTShield using preci-
sion, recall, and the false positive rate (FPR). Precision is
defined as |T P|/|FP+ T P|, recall is |T P|/|T P+FN|, and
FPR is |FP|/|FP+T N|, where TP is the number of true pos-
itives, FN is the number of false negatives, FP is the number
of false positives, and TN is the number of true negatives.
Table 10 presents the experimental results. Over the traces
received by the simulators, the precision of our automatically
generated signatures is 98%, the recall is 93%, and the FPR
is 0.06%. Over the requests gathered from the real devices,
our signatures can achieve a 97% precision, 83% recall, and
0.01% FPR.

We further used a long-time traffic captured in an indus-
trial control system’s HMI honeypot for the evaluation of
IoTSheild. The simulated industrial control system’s HMI
honeypot is used to monitor the attack traffic with a blind
scanning and attack. The duration was from October 2017
to November 2018 across from seven different cities. By
replaying the traffic, IoTShield reported 7,396 alerts of ex-
ploiting the HMI system. By manually checking the 7,396
alerts, we confirmed that about 6,705 alerts were indeed IoT
attacks. The rest of the alerts were confirmed to have at-
tacked other vulnerabilities on common web servers. For
instance, “/level/77/exec/show/config/cr”, is found in
exploit-db as a script to evade detection of HTTP attacks via
non-standard “%u” Unicode encoding of ASCII characters in
the requested URL. [7].

6.2 Performance

Signature generation. To understand the performance of IoT-
Shield, we conducted experiments to measure the time cost of

Table 11: Running time at different stages.

Stage Running time (s) Percentage
Data collection 0.386 51%

IoT vulnerability extraction 0.154 21%
Rule generation 0.210 28%

Overall 0.750 100%

processing vulnerability reports at each individual stage: data
collection, IoT vulnerability extraction, and automated rule
generation. The IoTShield prototype runs on a commercial
desktop computer (Ubuntu 18.04, 8GB of memory, 64-bit OS,
with 4-core Intel(R) Core(TM) i7-4790 CPU @ 3.60GHz), in-
dicating that the CPU and memory requirements of IoTShield
can be easily met. The IoTShield process runs in a single
thread. Table 11 lists the average time cost of each stage of
IoTShield for one rule generation. The acquisition of vulner-
ability reports from the Internet takes 0.386 seconds (51%).
Note that this stage requires message transmissions, and the
time cost is dependent upon the network conditions. The IoT
vulnerability extraction takes 0.154 seconds (21%), while the
rule generation costs more time, 0.21 seconds (28%), due to
the fact that it needs to establish the dependency tree of the
sentence with vulnerability parameters. Overall, the time cost
of IoTShield for automatic rule generation is low in practice,
and we could further reduce the time cost by running it in
multiple threads. The results indicate that IoTShield is effi-
cient and can be easily scaled to a desirable level to handle
the massive amounts of vulnerabilities online with a timely
update of the defense rules.

Rule inspection. To further evaluate the performance of IoT-
Shield in practice, we ran it as one component of an IDS for
processing the real-world traffic captured on the edge router
of a research institution, which consists of more than 100,000
Internet devices. The amount of traffic is about 53G, and the
duration of this traffic collection is about two hours. We re-
played the traffic to Snort with and without IoTShield. For the
Snort without IoTShield, it costs 426.28 seconds to inspect
all the collected packets; for the Snort with IoTShield, it only
adds 0.13 seconds for rule inspection over the entire 53G of
data, showing that IoTShield induces little overhead to IDSes
for online data processing.

7 Discussion

Limitation. In the data collection, we crawled 13 different
websites retrieving 0.4 million reports, and we plan to keep a
periodic update in the future. However, we acknowledge that
our methods cannot exhaustively collect all IoT vulnerabili-
ties in the wild. Although we believe that we have collected
the majority of IoT vulnerabilities in public, other methods



for data collection could also be considered to collect those
vulnerabilities recorded in less popular websites, such as per-
sonal blogs or social networking logs. For example, since IoT
vulnerabilities are usually targeted for some specific devices,
we will search product names combined with vulnerability
types as query keywords in search engines to crawl more
reports.

In addition, although we did observe that the majority
(80%) of the malicious HTTP requests are from blind scan-
nings, not targeted at specific IoT devices, we acknowledge
that the traffic logs collected by the honeypots could be biased,
due to the IoT device types in the honeypots and deployment
time periods of the honeypots. Ideally, IoTShield could be de-
ployed in ISPs for a large-scale and real-scenario evaluation.
However, we were unable to access ISP data. Alternatively,
we performed a real-scenario evaluation based on the traffic
we captured from edge routers of a research institution, whose
data size is about 114G and the duration is about 12 hours. In
this experiment, IoTShield only produced two false positive
alerts; considering the substantial data size, the FPR is close
to zero.

Since IoTShield deals with generally uncoordinated
sources of vulnerability information, it may sometimes face
incomplete source information (missing both vulnerability de-
scriptions and structured information, or vulnerability descrip-
tions not containing all vulnerability semantics), even we have
used report clustering to supplement the missing information.
As mentioned in Section 4.3, we indeed take the problem of
incomplete information into serious considerations. For struc-
tured information only (about 9% observed in our dataset),
we generate an exploit-specific signature that can contribute
to the detection of many ongoing attacks. However, we ac-
knowledge that we may miss some exploit variants, which
leads to the decrease of recall. For vulnerability description
only (about 20% observed in our dataset), we use vulnerabil-
ity location alone (e.g., “PwdGrp.cgi”) as signature for some
specific vulnerabilities, which may lead to the increase of
false positive rate. In this way, IoTShield can only generate
signatures for limited vulnerability types (e.g., information
disclosure and directory traversal). A natural follow-up step
is to investigate the missing information and explore a sys-
tematic information supplement method. We will leave this
as our future work.

Also, IoTShield cannot handle the exploits in some specific
program languages, and its processing capability is limited
to traffic logs, scripts, Linux commands, etc. This is because
IoTShield cannot easily generate the general exploit template
to identify vulnerability locations and parameters in a differ-
ent program language. In our future work, we plan to develop
a simulation system to execute these programs and generate
the attack traffic. Thus, we will be able to produce the attack
script in the traffic format (e.g., HTTP request) for whichever
program language is used. Moreover, although we did observe
a few IoT vulnerabilities in other application layer protocols,

our defense only targets HTTP vulnerabilities, which cover
most (90%) of the IoT vulnerabilities we observed in the hon-
eypots and vulnerability reports. In our future work, we plan
to cover more vulnerabilities, which exploit other applica-
tion layer protocols, by extracting vulnerability semantic and
structure information based on individual application layer
protocol’s domain knowledge.

Mitigation. Based on the results of our measurement study,
we have identified several potentially effective mitigation
strategies to restrain the fast-growing IoT-based attacks. In
our study, we observed a large number of vulnerability re-
ports in the wild, which are missed by vendors but exploited
by attackers. We also observed the heterogeneity of IoT de-
vices. IoT devices usually do not have an automatic update
mechanism and are maintained by device users who may
lack security awareness. Thus, the mitigation of an IoT-based
attack requires a collaboration among users, vendors, and
security researchers.

First, vendors should provide an official vulnerability re-
port platform, and reply to vulnerability reports in a timely
manner. In this work, we observed a relatively short duration
of public disclosure: report authors usually disclosed the bugs
after contacting vendors three times if no reply is received. In
addition, vendors are expected to provide technical support for
their discontinued products, especially those devices that are
still widely used. Since most users lack security awareness,
a vendor should increase efforts to avoid misconfiguration
and notify these users about updating their devices in a more
effective fashion (e.g., using an automatic update mechanism).
Second, the authors of vulnerability reports should follow the
guidelines for vulnerability reporting, such as a coordinated
disclosure. We observed that at least 2,000 vulnerabilities
were released before the vendors provided patches. Even
worse, some report authors released a disclosure without at-
tempting to contact the vendors or CVE. Finally, device users
should pay more attention to the device configuration (e.g.,
default password) and quickly update vulnerable firmware
when a new version becomes available.

Ethical issues. One ethical concern is the way by which the
security reports were gathered, i.e., scraping various websites.
We deployed certain mechanisms to bypass rate limiting and
authentication. However, our process follows the robot exclu-
sion protocol (robots.txt) of websites and causes no harm to
them or their users. Another ethical concern is that we pur-
chased attack tools on the black market. In our research, we
consulted with our Institutional Review Board (IRB) (though
no IRB review is required) and legal consul to ensure that the
purchase has been done within the legal and ethical bound-
aries. The purchases did not violate any law and regulation.
Also during the process, we refrained from gathering any in-
formation not supposed to collect, such as identity-related
data.



8 Related Work

Vulnerability-specific signature generation. Cui et
al. [46] presented a system for automatically generating
a vulnerability-specific signature (or data patch) for an
unknown vulnerability, given a zero-day attack instance.
Their system injects the softwares/real devices to generate
the variants of attack instances. However, it cannot be
easily applied for the IoT vulnerability-specific signature
generation, due to the large amount of different IoT device
vulnerabilities being covered. Wang et al. [60] proposed a
vulnerability-specific network filter, Shield, at an end-system
to prevent known vulnerability exploits. Shield requires
a manually-generated policy to describe the vulnerability.
Specially, it requires a fairly deep understanding of the
protocol over which the vulnerability is exploited. It is not
acceptable for the IoT vulnerability signature generation,
due to the significant amount of manual efforts to generate
policies for each IoT device. Brumley et al. [44] proposed
data-flow analysis techniques for automatically generating
vulnerability-specific signatures. However, it cannot be
deployed in IoT vulnerability signature generation, due to
the lack of source code. By contrast, IoTShield analyzes the
content of more than 7,500 IoT vulnerability reports and
recovers key knowledge to generate vulnerability-specific
signatures.

NLP for vulnerability assessment. Pandita et al. [54] used
NLP techniques to analyze Android APP descriptions and
API documents for determining unnecessary permissions.
Sabottke et al. [55] explored the vulnerability-related informa-
tion disseminated on Twitter and provided an early warning
for the existence of real-world exploits by tweets. Liao et
al. [50] presented a novel technique for automatic Indicator-
of-Compromise extraction from unstructured text. You et
al. [61] proposed leveraging vulnerability-related text (CVE
reports and Linux git logs) to guide Linux kernel vulnerabil-
ity fuzzing. Zhu et al. [62] mined Android documents and
security literature to generate features for detecting Android
malware. Caselli et al. [45] proposed to automatically mine pa-
rameter configuration rules of network control systems (e.g.,
BACnet-based building automation systems) from system
specifications. In contrast to these previous works, we utilize
a set of IoT vulnerability reports’ syntax features to discover
vulnerability-specific knowledge for IDS signature generation
to protect IoT from being attacked.

Vulnerability-related measurement. Shahzad et al. [58]
conducted a large-scale study on the software vulnerability
life-cycle based on public vulnerability databases. They uti-
lized association rule mining to extract the relationship be-
tween the representative exploitation behavior of hackers and
the patching behavior of vendors. Nappa et al. [53] presented
a systematic study of patch deployment in client-side vulner-
abilities, in order to analyze how users deploy patches. They

found that the patch mechanism has an important impact upon
the patch deployment rate. Li et al. [48] performed an exten-
sive study on the effectiveness of vulnerability notifications,
with the aim of illuminating which fundamental aspects of
notifications have the greatest impact. Li et al. [49] conducted
a large-scale empirical study of security patches based on
the open-source software projects. They sought to identify
the differences between security and non-security bug fixes.
Sarabi et al. [56] studied the vulnerability patching by analyz-
ing vulnerabilities across four software products. Their focus
is mainly on how individual behaviors influence the security
state of an end-host. In contrast to previous works focusing on
vulnerabilities in CVE or NVD, our work extensively studies
the IoT-related vulnerabilities that are from a large number of
vulnerability reports scattered around forums, mailing lists,
and blogs, and we further explore the effectiveness of using
such reports for IoT vulnerability defense.

9 Conclusion

To understand how cybercriminals launch IoT-related attacks,
we leveraged honeypots to collect the traces of real-world
IoT exploits and analyzed four popular attack toolkits. Our
research sheds light on a largely overlooked cause of the perva-
siveness of IoT attacks in recent years: IoT vulnerabilities are
publicly available and easy to exploit, and today’s IoT attacks
almost exclusively use known vulnerabilities for mounting
malicious attacks. More importantly, our findings lead to the
design of IoTShield, a simple yet effective IoT vulnerability-
specific signature generation system for intrusion detection.
IoTShield first collects 430,000 vulnerability reports from the
past 20 years and identifies content of 7,500 IoT vulnerability
reports. IoTShield then retrieves key knowledge to generate
vulnerability-specific signatures. These signatures can be eas-
ily deployed at existing intrusion detection systems or web
application firewalls to detect exploit attempts on a target IoT
device. Therefore, IoTShield significantly raises the bar for
future IoT attacks to succeed.
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A Keywords and Regular Expressions

Table 12: Keywords used in finding attack tools.

Keywords

Amnesia, next-gen Mirai botnets , Mirai Okiru, IoTroop

Satori IoT botnets, Brickerbot IoT botnets, Masuta,

Tsunami, Reaper, Hajime, IoT Mine Bitcoin, IoT hacking tool,

Persirai Botnet, Bashlite, Gafgyt, Qbot, Remaiten, Torlus,

DoubleDoor IoT botnet, JenX, IP Cameras GoAhead

Table 13: Regular expressions of structured information.

Regular expressions

Linux
command

curl [\w\W]+?\n\n

wget [\w\W]+?\n\n

wget [\w\W]+?\n

curl [\w\W]+?\n)

Traffic
log

POST [\w\W]+?\n\n

GET[ \n][\w\W]+?\n\n

PUT [\w\W]+?\n\n

POST [\w\W]+?\n\n [\w\W]+?\n

Exploit
URL

((https?)://?[-A-Za-z0-9+&@#/%?\

*=_̃&$\\‘’\" \[\]() <>\]|!:,.;]+[-A-Za-z0-9 +

\[\]&’\" ()\]\*<># \\/%= _])

Timeline timeline[\w\W]+? \n\n[\-\_]?

time line[\w\W]+? \n\n[\-\_]?

https://www.shodan.io/
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